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Peter’'s First Trial and Design

Study MDACC 2017 0772 is based on subgroup-stratified randomization

Medically, would like to test if
" On.; > 0c; for subgroup
Randomization L L
m i € {Primary, Salvage}. Suppose
' m; =1 means Oy,; > 0c;.
Statistically, one could use a
T Bayesian hierarchical model to

[ subgroup 2 P .
; Randomization conduct inference:

Nuprehab

Patients
Enrollment |

Likelihood Y | On.i,0c.: ~ f(+0n.4,00.),

Prior for 0
(On,i,0c,) [mi=1 ~  fi()
(Onis0c:) |mi=0 ~  fol)

Prior for m; m; | p ~ Bern(p)
Hyper prior for p p ~ Beta(a,b)
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Reducing 6-dimension outcome to 1 utility value

Ordinal outcome y — a Post Operative Morbidity (POM) score =
{0,1,2,3,4,5}

Prob. of POM 6 = (6, ...,05) — a six dimensional probability vector

Utility T = S5 _ 0k * U(y = k) where U(y = k) is an elicited utility
score.

Elicited prior POM score Probabilities
for C= Standard of Care

0 1 2 3| 4 5

Primary | .50 | .20 | .10 | .10 | .05 | .05

Salvage | .30 | .25 | .10 | .10 | .10 | .15

Elicited numerical POM score Utilities
[Score [ 0 [1[2[3[4] 5 |
[ Utility [ 100 [ 85 [ 65 [25 [10] 0 |

Subgroup-Specific interim and final N-versus-C tests are based on
Pr{U(N,g,0) > U(C,g.0)} where

U(N, g,0) = Mean Utility of N in subgroup g = P or S
U(C, g,0) = Mean Utility of C in subgroup g = P or S
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The Bayesian models work — of course

BHM gives the right inference and good operating characteristics

Pr Conclude Pr Conclude
N Superior to C N Inferior to C Mean N
Scenario Prim Salv Prim Salv
1 (Null/Null) 02 02 03 03 199.2
2 (Alt/Nul) .78 04 00 .02 189.6
3 (Null/Al) 03 80 02 .00 187.0
4 (Alt/Alt) 82 .84 .00 .00 1724

If we ignore subgroups (Primary or Salvage), BHM still works but cannot
(it's impossible) differentiate subgroup by treatment interaction

Pr Conclude Pr Conclude
N Superior to C N Inferior to C  Mean N
Scen(Prim/Salv)  Prim Salv Prim  Salv
1 (Null/Null) .02 02 03 03 1994
2 (Alt/Null) 44 A4 .00 .00 193.0
3 (Null/Alt) .56 .56 .00 .00 189.6
4 (Alt/Alt) .98 .98 .00 .00 145.1
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What did we learn?

When there is a subgroup by treatment interaction, model it!

When we do, big rewards!
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Peter's Second Trial and Design

It gets much more complicated

Subgroups Six (known) subgroups (three diseases by two tumor sizes)

Treatments Three doses of natural killer (NK) cells (103, 10°, and 107
cells per kg) modified NK cells;

Outcomes Five co-primary time-to-event outcomes!

Goal: Subgroup Specific Dose Finding

Solution:
» Use a utility score to summarize the total health benefits from the
five outcomes — the right way!

(3p.0r) Convert a 12-dimensional outcome
oc o7 [ (1,0) (0,00 (0.1) = into a ONE continous score!
0 0] 20 50 90
0 1|10 30 70
1 0] 10 30 70
1 1| 5 20 50

» Introduce patient-specific fraity to account for additional variabilities
and a regression model to induce parsimony
» A complex and smart design allows learning across subgroups
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Subgroup-specific modeling and designs pay off

Simulation: Scenario 6

UTR varies with (d, Z,r), and the ogmosic o | e
set of acceptable doses varies with R e R e
Z = (Z f). NHL 0,3) (1,3)
Dose [ d=1 d=2 d=3 7p |[[d=1 d=2 d=3 7p
o 035 003 013 015 075 010 037 030
U™ || 41.74 59.80 57.69 1453 55.48  40.90
Psop || 0.76  0.00  0.09 099 000 034
P 000 056 044 000 099 001
T 008 045 002 020 024 08 006 040
U™ || 57.75 3495 57.83 47.19 7.81 5507
Psop || 0.00 082  0.00 0.02 099  0.00
Pl 080 0.00  0.20 0.04 000 096
P 005 010 030 020 016 029 070 040
U™ || 59.50 57.18 46.28 5257 4410 18.84
Psop || 0.00 001 051 0.00 003 091
P 053 047 0.01 089 011  0.00

» The design picks the right dose for each subgroup with high
probabilities
» The design stops the bad dose with high probabilities

But, only Juhee Lee and Peter Thall probably knows how to do it.
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What did we learn?

When there is a subgroup by treatment interaction, model it!

When we do, big rewards!

BUT, it is complicated to model!
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Dan’s World — Welcome to the World of an Oncologist’s

Precision Medicine

Oncologists do “precision oncology all the time and in a much more
complex fashion!

EGA:Molecular Heterogeneity
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Precision Oncology is about HETEROGENEITY

Interpatient heterogeneity
N

Inter-patient heterogeneity Precision oncology is about inter-patient
heterogeneity

» Every patient is different : no two patients have the same
genome; mutations; phenotypes;

» We can only model a small number of biomarkers using
statistical models: Multiplicity almost kills validity

» Even if we can overcome multiplicity, we only have a small
number of drugs! — Patients are different, but we only have so
many drugs to treat.
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Precision Oncology is about HETEROGENEITY

Interpatient heterogeneity Intratumour heterogeneity

Intertumour
heterogeneity

Intra-patient heterogeneity Precision oncology will be at the cellular level

» Every cell is different : no two tumor cells have the same
genome!

» How do we accommodate Multiplicity at cellular level?

» Even if we can overcome multiplicity, we only have a small
number of drugs! — cells are different, but we only have so
many drugs to treat.

» Drug combinations might provide some hope!

» Individualized therapeutics based on genomics profiling is
coming!
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How Can Statistics Help Oncology?

Many subgroup analysis methods and designs have been proposed!

Shrinkage Inference Target Subgroup-based Drug Development
2.1. Regression: "
priors on the treatment X covariate Exploratory Trials for Further Confirmatory trial
. . Standard trial for exploration / . o
treatment and interaction Design subgroup =) early = °ff_e lcacy)
treatment X covariate coefficients finding confirmation confifmation
1 1 Subgroup Enrichment design /
mteraci_:lon Biomarker-stratified
coefficients design
2. tion: Phase I1/Ill confirmatory adaptive
odel selectio : / ; d_d e
. . . subgroup enrichment designs witl
shnnkage prior on competlng models prespecified subgroups (Wang et al
model parameters (2009)[22], Brannath et al
. 2 2 h
2.3. Potential outcome Adaptive (2009)[23], among many others)
framework: Subgroup Phase Il/lll confirmatory adaptive subgroup enrichment designs
. Enrichment without prespecified subgroups (Mehta and Gao et al (2011)[26],
priors for the mean enhanced treatment Design Simon and Simon (2013, 2018)[29,30])
outcomes in the effect -
Phase Il exploratory adaptive
leaves of the tree enrichment designs (Xu et al
2.4. Decision problem: (2016)I32], Guoet al
. s . (2017)[33])
implicit in the optimal subgroup
underlying report (action) Fi 2: Overvi £ diff b based desi
probability model igure 2: Overview o erent subgroup-based designs.
2.5. Random Quantity:
implicit in the arandom subset (B) none
underlying in the covariate

probability model  space

o

See review at Nugent et al. (2019, JCO Precision Oncology, In press)
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How Can Statistics Help Oncology?

How many trials are based on subgroup enrichment designs?
To my knowledge, very few!

» Martin M, Chan A, Dirix L, et al. A randomized adaptive phase
[1/111 study of buparlisib, a pan-class | PI3K inhibitor, combined with
paclitaxel for the treatment of HER2—advanced breast cancer
(BELLE-4). Annals of Oncology. 2016;28:313-320.

» Simon KC, Tideman S, Hillman L, et al. Design and implementation
of pragmatic clinical trials using the electronic medical record and an
adaptive design. JAMIA Open. 2018;1:99-106.

We need statistical tools that can work in real-world settings.
We need to start testing strategies rather than treatments
We need statisticians to work closely with physicians!
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How Could Precision Oncology Look Like in 10 years?

» Biomarkers are based on a low-dimensional summary of the
multi-omes (genome, transcriptomes, proteomes, etc)

» Real-world data continuous update a statistical (Bayesian) predictor
to output optimal decision rules for treatment

» Enrichment platform trials based on a master protocol allows
approval of new treatment strategies

» Patients survival and health benefits keep increasing although new
diseases emerge as humans survive longer
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