abbvie

Bayesian Interim Monitoring for Faster Decision-Making in Early Oncology Trials

Chang-Heok Soh, Ph.D and Victoria Chang, Ph.D

STAT4ONC Annual Symposium April 26th, 2019

- The support of this presentation was provided by AbbVie. AbbVie participated in the review and approval of the content.
- Chang-Heok Soh and Victoria Chang are employees of AbbVie Inc.

Agenda of Presentation

- Interim analysis (IA) in Phase 1-2 oncology studies
- Decision-making at IA based on predictive probability of success
 - Is there sufficient confidence at IA in the outcome at final analysis to make decision early (though may still continue trial)?
 - Focus today: Phase 1 expansion cohorts or Phase 2 single-arm trials with binary efficacy endpoint (eg ORR, CBR)
 - Method extends to other endpoints and randomized trials
- Operating characteristics via simulations

Interim Analysis of Efficacy in Clinical Trials

- Efficacy IA is any analysis intended to evaluate efficacy prior to formal completion of a trial
- Some motivations for IA:
 - Ethical imperative to avoid treating patients with ineffective or inferior therapies
 - Efficient allocation of resources
 - Faster decision-making for drug development

Interim Analysis of Efficacy in Phase 1-2 Oncology Studies

- May want to continue study in case of initial weak efficacy signals (unless unethical to continue)
 - Fuller understanding of drug's effect may require info on patient population, PK/PD, biomarkers, safety, etc, especially in signalseeking Ph 1
 - Initial weak efficacy signals may lead to potentially enriched populations or other protocol changes

Interim Analysis of Efficacy in Phase 1-2 Oncology Studies

- Typically want to continue the trial even if early data drives early GO decision:
 - Collect more info on safety data, dosing schedules, biomarkers and efficacy
 - Identify appropriate populations
 - Data to inform possibility for treatment combination
- But early evidence of efficacy could accelerate development, e.g.
 - Start additional expansion arms, extend current study into Phase 1/2, or initiate planning of additional trial at-risk
 - Trigger decision to increase manufacturing spending

Decision-Making at Interim Analyses

Interim Analyses: Is the trial very likely to show evidence supporting entering NO-GO, grey or GO zone at the end of the trial?

7

Bayesian Interim Analyses (IA) for Faster Decision-Making

- Decision-making at IA based on predictive probability of success
 - Is there sufficient confidence at IA in the outcome at final analysis to make decision early (though may still continue trial)?
- Bayesian approach:
 - Allows flexibility in IA timing and uses data to-date for decision-making
 - Allows continuous monitoring of efficacy signals
 - Enables faster decision-making for drug development

Decision-Making at IA Using Predictive Probability of Success (PPOS)

- Definition: The probability of achieving a successful result at a future analysis, given current interim data
- Based on Bayesian framework and can incorporate prior belief or historical information

Hypothetical Example:

- 13 more patients for rest of Ph 1, need 2 more responders to enter grey zone, 9 more responders for GO-zone
- Based on current data and predicted future data
 - Predictive prob that final decision is $GO=Pr(\geq 9 \text{ responses in } 13 \text{ more pts}) = 0.1\%$
 - Predictive prob that final decision is NO-GO=Pr (0-1 response in 13 more pts) =63%
 - Predictive prob that final decision is GREY =37%
- Should we make early GO or early NO-GO decision?

Hypothetical Example:

- If team specifies confidence thresholds for early No-GO and early GO, e.g.
 - Early NO-GO if predictive prob/confidence that final outcome is NO-GO ≥ 80% (the higher the bar, the harder to trigger early NO-GO)
 - Early GO if predictive prob/confidence that final outcome is GO ≥ 80%
 (the higher the bar, the harder to trigger early GO)

Observed	Predictive prob	Predictive prob		
ORR	for NO-GO (%)	for GO (%)		
0/10	98	0.001		
1/10	63	0.1		
2/10	15	2		
3/10	0	13		
4/10	0	40		
5/10	0	73		
6/10	0	93		
≥7/10	0	>99		

Design assumptions for simulations:

- Planned sample size of 23
- Min / Base TPP = 15% / 30%
- IA at n=10, 15 or continue to 23
- At end of Ph 1
 - NO-GO if Pr (true ORR < min TPP given final data) > 80%
 - GO if Pr (true ORR ≥ base TPP given final data) ≥ 80%
- At any IA,
 - Early NO-GO if predictive prob/confidence in final outcome being NO-GO given IA data > 80%
 - Early GO if predictive prob/confidence in final outcome being GO given IA data > 80%

	At max sample size (n=23)			With IA at n=10, 15			%	
True ORR	% Final decision is NO-GO	% Final decision is GREY	% Final decision is GO	Avg N	% Early Decision	% Early decision is early NO-GO	% Early decision is early GO	Concordance between IA and final analysis
10%	59.2	40.8	<0.01	16.6	57.9	57.8	<0.01	80.6
15%	30.9	69.0	0.1	19.2	35.5	35.3	0.2	81.4
20%	13.3	85.9	0.8	20.8	20.6	19.7	0.9	85.7
30%	1.5	86.3	12.2	21.7	11.9	4.8	7.1	86.4

- Real-time monitoring requires good real-time data cleaning and efficient operational coordination with sites to get the data in-house
- Operating characteristics should be assessed under different assumptions as part of design evaluation

THANK YOU

